Modularity

Chapter ??

27 June 2006
27 August 2006

23 October 2006

MODULARITY

This chapter explains:

· the importance of modularity

· considerations for component size and complexity

· the argument against global data

· information hiding and encapsulation
· how object-oriented programming supports modularity

· the terms coupling and cohesion

1 Introduction

Modularity is to do with the architectural structure of software - the nature and number of its constituent components and their interactions. This structure is an important product of all of the major current design methods. Modularity is one of the key issues in software development. But a perfect design is the almost unobtainable Holy Grail.
If we were asked to design an automobile, we would probably design it in terms of several subsystems - engine, transmission, brakes, chassis, etc. Let us call these subsystems components. In identifying these particular components for an automobile, we have selected items that are as independent of each other as possible. This is the essence of good modularity.

The guidelines we shall describe in this chapter help to answer questions like:

· how big should a component be?

· is this component too complex?

· how can we minimize interactions between components?

Before we embark on these questions, we should identify what a "component" is. Usually this is dictated by practical considerations, such as the facilities provided in the available programming language and operating system.

There is a variety of mechanisms for splitting software into independent components, or, expressed another way, grouping together items that have some mutual affinity. Java is a typical modern language. At the finest level of granularity, a number of statements and variable declarations can be placed in a method. A set of methods can be grouped together, along with some shared variables, into a class. A number of classes can be grouped into a package. Methods, classes and packages are all examples of mechanisms for describing components. Thus a component is a fairly independent piece of program that has a name, some instructions and some data of its own. A component is used by some other components and, similarly, uses other components.

In this chapter, we use the term component in the most general way to encompass any current or future mechanism for dividing software into manageable portions.

2 Why Modularity?

The scenario is software that consists of thousands or even hundreds of thousands of lines of code. The complexity of such systems can easily be overwhelming. Some means of coping with the complexity are essential. In essence, the desire for modularity is about trying to construct software from pieces that are as independent of each other as possible. Ideally, each component should be self-contained, and have as few references as possible to other components.

If a piece of software has been well designed, we can study the logic of an individual component in isolation from any others. However, as part of the task of studying a component we need to know something about any components it uses. For this purpose the power of abstraction is useful, so that while we understand what other components do, we do not need to understand how they do it. So, ideally, we never need to comprehend more than one component at a time. When we have completed an examination of one component we turn our attention to another.

This discussion assumes that the software has been well designed. This means that abstraction can be applied in understanding an individual component. However, if the roles of a component are not obvious from its outward appearance, then we need to delve into it in order to understand what it does. Similarly, if the component is closely connected to other components, it will be difficult to understand in isolation. We discuss these issues later.
This goal of modularity has consequences for nearly all stages of software development, as follows.
Architectural design

The large-scale structure of software is determined during this step. It is therefore critical for creating good modularity. A design approach that leads to poor modularity will lead to dire consequences later on.

Component design

If the architectural design is modular, then the design of individual components will be made easier. Each component will have a single well-defined purpose, with few, clear connections with other components.

Debugging

It is during debugging that modularity comes into its own. If the structure is modular, it should be easier to identify which particular component is responsible for the observed fault. Similarly, the correction to a single component should not produce "knock-on" effects, provided that the interfaces to and from the component are not affected.

Testing

Testing a large system made up of a large number of components is a difficult and time-consuming task. It is difficult to thoroughly test an individual component once it has been integrated into the system. Therefore testing must be carried out in some kind of piecemeal fashion. There are several approaches, see chapter ?? on testing, in which good modularity certainly helps.
Maintenance

Maintenance means fixing bugs and enhancing a system to meet changed user needs. This activity typically consumes enormous amounts of software developers' time. Again, modularity is crucial here. Suppose that a change to one component is necessary. The ideal would be to make a change to a single component, with total confidence that no other components will be affected. However, too often it happens that obvious or subtle inter-connections between components make the process of maintenance a nightmare.

Independent Development

Most software is implemented by a team of people, often over months or years. Often, each component is developed by a different person. It is therefore vital that interfaces between components are clear and few. If components are modular, different people can develop them at the same time, thus shortening the overall delivery time.
Damage control

When a fault occurs in a component, the spread of damage to other components will be minimized if it has limited connections with other components.

Software Re-use

A valuable software engineering technique is to re-use software components from a library or from an earlier project. This avoids re-inventing the wheel, and can save enormous effort. Furthermore, re-usable components are usually thoroughly tested. It has long been a dream of software engineers to select and use useful components, just as an electronic engineer consults a catalog and selects ready-made, tried-and-tested electronic components.

However, a component cannot easily be re-used if it is connected in some complex way to other components in an existing system. A heart transplant from one human being to another would be impossible if there were too many arteries, veins and nerves to be severed and re-connected.

There are therefore three requirements for a re-useable component:

· it provides a useful service
· it performs a well-defined function or functions
· it has the minimum of connections (ideally none) with other components

3 Component size

How big should a software component be? Consider any piece of software. It can always be constructed in two radically different ways - once with small components and again with large components. As an illustration, figure 1 shows two alternative structures for the same software. One consists of many small components; the other a few large components.

	
[image: image1.emf]
	
[image: image2.emf]

Figure 1 Two alternative software structures

If the components are large, there will only be a few of them, and therefore there will tend to be only a few connections between them. We have a structure that is a network with few branches and a few very big leaves. The complexity of the inter-connections is minimal, but the complexity of each component is high.

If the components are small, there will be many components. There will be many connections in total. The structure is a network with many branches and many small leaves. The smaller the components, the easier an individual component should be to comprehend. But there is a risk of being overwhelmed by the multitude of inter-connections.

The question is: which of the two structures is the better? The alternatives are large components with few connections, or small components with many connections. By having small components, we are only increasing the number of components. So all we are doing is to decrease complexity in one way (the number of statements in a component) at the cost of increased complexity in another way (the number of components). So we gain nothing overall.

A practical point of view is that a component should occupy no more than a screen of coding (about 40 to 50 lines). Such a component can be studied and comprehended as a whole, without the need for scrolling.
A more extreme view is that a component should normally take up about seven lines or less of code, and in no circumstances more than 9. Arguments for the "magic number 7" are based on experimental results from psychology. Research indicates that the human brain is capable of comprehending only about seven things (or concepts) at once. This does not mean that we can remember only seven things; clearly we can remember many more. But we can only retain in short term memory and study as a complete, related set of objects, a few things. The number of objects ranges from about 5 to 9, depending on the individual and the objects under study. The implication is that if we wish to understand completely a piece of code it should be no more than about 7 statements in length. Relating lines of code to concepts may be over-simplifying the psychological basis for these ideas, but the idea can be helpful.

Clearly a count of the number of lines is too crude a measure of the complexity of a component. A seven-line component containing several if statements is more complex than seven assignment statements. Chapter 29 on metrics and quality assurance pursues this question.

Think about how a piece of software is examined. Studying software is necessary during architectural design, during verification, during debugging and during maintenance - and it is therefore an important activity. There are two extreme cases:
· when we need to understand the overall structure of software (for example during architectural design or during maintenance), we need large components.

· on other occasions (for example debugging) we need to focus attention on an individual component. For this purpose a small component is preferable.

Do we need a few, large components or many small components? The answer is that we need both.

If you measure the fault density - the number of faults per line of code (LOC), in real life software, you get a distribution as shown in figure 2. This shows a sweet spot, the optimum size of components of about 200 to 400 LOCs. This reinforces the explanation that, if a component becomes very small, it has a large number of complicated connections (method calls) to other components and this increases the complexity, understandability and fault rate of the component.

[image: image3.emf]

Figure 2 Faults vs. Component Size

Small components can give rise to slower programs because of the increased overhead of method calls. But nowadays a programmer's time can cost significantly more than a computer's time. The question here is whether it is more important for a program to be easy to understand or whether it is more important for it to run quickly. These requirements may well conflict and only individual circumstances can resolve the issue. It may well be better, however, first to design, code and test a piece of software using small components. Then, if performance is important, particular methods that are called frequently can be re-written in the bodies of those components that use them. It is, however, unlikely that method calls will adversely affect the performance of a program. Similarly, it is unlikely that encoding methods in-line will give rise to significant improvement. Rather, studies have shown that programs spend most of their time (about 50%) executing a small fraction (about 10%) of the code. It is the optimization of these small parts that will give rise to the best results.
4 Global Data is harmful

Just as the infamous goto statement was discredited in the 1960's, so later ideas of software engineering came to regard global data as harmful. Before we discuss the arguments, let us define some terms. By global data we mean data that can be widely used throughout a piece of software, and is accessible to a number of components in the system. By the term local data, we mean data that can only be used within a specific component; access is closely controlled.

For any particular piece of software, the designer has the choice of making data global or local. If the decision is made to use local data, data can, of course, be shared by passing it around the program as parameters.

[image: image4.png]Global data
X

Figure 3 Global data

Here is the argument against global data. Suppose that three components named A, B, C access some global data as shown in figure 3. Suppose that we have to study component A in order, say, to make a change to it. Suppose that components A and B both access a piece of global data named X. Then in order to understand A we have to understand the role of X. But, now, in order to understand X we have to examine B. So we end up having to study a second component (B), when we only wanted to understand one.

But the story gets worse. Suppose that components B and C share data. Then to fully understand B we have to understand C. Therefore in order to understand component A, we have to understand not only component B but also component C. We see that in order to comprehend any one component that uses global data we have to understand all the components that use the global data.

In general, local data is preferable because:

·
it is easier to study an individual component, because it is clear what data the component is using

·
it is easier to remove a component to use in a new program, because it is a self-contained package.

·
the global data (if any) is easier to read and understand, because it has been reduced in size.

So, in general, the amount of global data should be minimized (or preferably abolished) and the local data maximized. Nowadays most programming languages provide good support for local data and some do not allow global data at all.

Most modern programming languages provide a facility to group methods and data into a component (termed variously a component, class or package). Within such a component, the methods access the shared data, which is therefore global. But this data is only global within the component.
5 Information Hiding
Information hiding, data hiding or encapsulation is an approach to structuring software in a highly-modular fashion. The idea is that for each data structure (or file structure), all of the following:

·
the structure itself

·
the statements that access the structure

·
the statements that modify the structure

are part of just a single component. A piece of data encapsulated like this cannot be accessed directly. It can only be accessed via one of the methods associated with the data. Such a collection of data and methods is called an abstract data type, or (in Object-Oriented Programming) a class or an object.

The classic illustration of the use of information hiding is the stack. Methods are provided to initialize the stack, to push an item onto the stack top and to pop an item from the top. (Optionally, a method is provided in order to test whether the stack is empty.) The only access to the stack is via these methods. Given this specification, the implementer of the stack has freedom to store it as an array, a linked list, or whatever. The user of the stack need neither know, nor care, how the stack is implemented. Any change to the representation of the stack has no effect on the users (apart, perhaps, from its performance).

Information hiding meets three aims:
(a) Changeability

If a design decision is changed, such as a file structure, changes are confined to as few components as possible and, preferably, to just a single component.

(b) Independent Development

When a system is being implemented by a team of programmers, the interfaces between the components need to be as simple as possible. Information hiding means that the interfaces are calls on methods which, arguably, are simpler than accesses to shared data or file structures.

(c) Comprehensibility

For the purposes of design, checking, testing and maintenance, it is vital to understand individual components independently of others. As we have seen, global and shared data weaken our ability to understand software. Information hiding simply eliminates this problem.

Some programming languages (Ada, C++, Modula 2, Java, C#, Visual Basic .Net) support information hiding by preventing any references to a component other than calls to those methods declared to be public. (The programmer is also allowed to declare data as publicly accessible, but this facility only used in special circumstances because it subverts information hiding.) Clearly, the facilities of the programming language can greatly help structuring software according to information hiding.

In summary, the principle of information hiding means that, at the end of the design process, any data structure or file is accessed only via certain well-defined, specific methods. Some programming languages support information hiding, while others do not. The principle of information hiding has become a major concept in program design and software engineering. It has not only affected programming languages (see chapter 15), but led to distinctive views of programming (see below) and design (see chapter 11). In object-oriented programming, data and actions that are strongly related are grouped together into entities called objects. Normally access to data is permitted only via particular methods. Thus information hiding is implemented and supported by the programming language. Global data is entirely eliminated.
Self test question

What is the relationship between encapsulation and global data?

Answer

They are opposites.

End

6 Object-Oriented Programming

In object-oriented programming, methods and data that are strongly related are grouped together within an object. This matches exactly the ideas of information hiding and encapsulation discussed above. The items within an object are strongly coupled and the object as a whole possesses high cohesion. A well-designed object presents a few, simple interfaces to its clients. The interfaces are those public methods that are declared to be accessible outside of the object. Thus a well-designed object displays loose coupling with other objects – method calls with pure data parameters to methods possessing functional cohesion. It is possible to code an object that allows clients direct access to its variables, but this is regarded as poor practice and heavily discouraged, because it is essentially making data global.

Object-oriented languages encourage the programmer to describe classes, rather than individual objects. For example, here is the description, in Java, of a graphical object, a ball, which has x and y screen co-ordinates:

class Ball {

 protected int x, y;

 private int radius;

 public void setRadius(int newRadius) {

 radius = newRadius;

 }

 public void setX(int newX) {

 x = newX;

 }

 public void setY(int newY) {

 y = newY;

 }

}

Here the private and public elements are clearly distinguished. A third description, protected, means that the item is not accessible to clients but is accessible to subclasses, as we shall see shortly. Not shown in this example are private methods that are used by a class as necessary to carry out its work.

It is of course possible to misuse objects, by grouping ingredients that are not related. However it is the purpose of a good design approach to ensure that this does not arise (see chapter 11).

Object-Oriented Programming completely eliminates global data; all data is encapsulated within objects.

The open-closed principle

If you need to modify a class (or object), there is no need to make a separate edited copy. Instead you can use the inheritance mechanism of OOP. So the original copy of the class remains intact, but is re-used with additional or changed methods. This is called the open-closed principle. Using the example above, we can create a new class called MovingBall, with additional methods that cause the ball to move left and right:

class MovingBall extends Ball {

 public void moveLeft(int distance))

 x = x - distance;

 }

 public void moveRight(int distance) {

 x = x + distance;

 }

}

The new class MovingBall has all the features of the class Ball, But as the keyword extends denotes, the new class has additional methods. The variables x and y in the superclass are accessible in this subclass because they were declared as protected. MovingBall makes use of Ball without altering it. Thus the modularity and integrity of the original component remain intact.

There is a snag: inheritance creates an additional type of coupling (see below) between a class and its super-classes. Thus if a particular subclass is changed, the programmer needs to re-examine all the superclasses to see of there are any knock-on effects.
7 Types of Connection

Shared or global data

Shared data is data that two or more components have access to. The data is either held within one of the components or within a distinct component. Global data means a collection of data that is accessible to a large number of, perhaps all, components. The facility to access data in this way is present in nearly all widely-used programming languages.

We have already seen, above, why this is undesirable.
In a system with concurrent activity, shared data presents an additional problem: to avoid uncontrolled concurrent by different threads. When a data is accessed by two or more threads, there is a need for mutual exclusion. This can be achieved by placing the data in its own object and providing access only via methods. On Java, these methods must be declared as synchronized so that only one thread can enter one method at a time, excluding any others.

Self Test Question

Give one reason why global data is undesirable.

Answer

In order to understand one component, we are forced into studying them all.

End
Synchronization
A common scenario is where two or more components are independent threads that need to collaborate. Specifically, one thread needs to tell a second thread that something has happened. This scenario is discussed in detail in chapter 14 on the basics of the programming language.
In Java, two methods - wait and notify - are provided to provide synchronization. But, while they seem simple, they are in fact difficult and error-prone in their use. They are too primitive, along with a another widely used mechanism called semaphores. So it is often advisable to use something that is more expressive and higher level.
Method call

Method calls mean that components interact in a well-defined manner, suffering none of the weaknesses of shared data. In particular, it is quite clear what information is being communicated between components. Remember though, that for weak coupling, the number of parameters should be minimized.
In chapter 14 on the basics of programming language, we discuss the difference between value and reference parameters. We also discuss the difference between function methods and procedure methods. We argue that, ideally, parameters should only be used to communicate value into a method and should be passed by value. In those circumstances where a value is to be passed back to the caller, it should ideally be done as the return value of a function method.

The concept of the method call mechanism is used in remote method calling (sometimes known as remote procedure calling, remote method invocation, or RMI). Remote method calling occurs when the caller is in a different computer from the called. Web services use this mechanism.

Another type of method calling is event-driven programming; a component is brought to life when some event occurs. This could be an external event, such as the user clicking on a GUI button or an input-output device signaling completion, or an internal event, such as a timer signaling the end of some time period. Some programming languages, such as Visual Basic .Net and C#, provide this mechanism as part of the language itself. In event driven programming, although one component calls another, the connection is loose and sometimes almost invisible.

A special example of method calling is the instantiation of a new object.
It is possible to worsen method calling by passing not a pure data parameter but an element of control. An example is where a component is passed an indicator telling the method which action to take from amongst a number of available actions. (This indicator is sometimes called a switch.) Here is an example of a method call on a general-purpose input-output method:

doInputOutput(command, device, buffer, length)
The parameter command has values 0, 1, 2, etc. that specify whether the operation is a read, write, open, etc. This is undesirable simply because it is unnecessarily complicated. This method can be divided into several methods - each carrying out a single action. As an alternative to calling a single method and passing it a switch, we can instead call the individual appropriate method, like this:

read(device, buffer, length)
This eliminates a parameter from the interaction and at the same time creates well-defined methods, each with a specific function. This contrasts with a single, multi-purpose method. Arguably this modularization is easier to understand and maintain.
Pipes (Data Flow)

In this mechanism, one component passes a serial stream of data to another. We can visualize this by imagining that one component outputs information as if to a serial file, and the second component reads it, again as if from a file. The important feature is that the outputting component has no access to the data, once it has released it.

This type of interaction is available in some programming languages and most operating systems. For example, within the Java library, classes allow a producer object (data source) to send a serial stream of data to a consumer object (data sink). Ada allows software to be constructed from concurrent tasks that communicate by message passing. In the Unix system, programs (called filters) can communicate via pipes, which again are serial data streams.
If the communication between components is text, or some other standard data format, the components need not be running on the same machine, they can be running under different operating systems and written in different programming languages. This is indeed weak coupling.

Serial data coupling also means that there is no need to synchronize the communicating components. They can run at entirely different speeds or, indeed, one after the other, provided that the overall performance requirements are satisfied.

Here is an example. Word processors usually provide a feature to alter the width of a line on the page. When the user alters the line width, the document has to be re-formatted to fit the new size. One way to implement this is to create two threads:

1. thread breaker inputs the file of text, breaks it down into words and outputs a stream of words

2. thread builder inputs the stream of words and builds new lines and outputs them to a file.

The communication between the threads can be implemented as a pipe. A pipe is one-directional. One thread writes information to the pipe; another reads information. If there is (temporarily) no more information to read, the reader is suspended until data becomes available. Likewise, if the pipe is (temporarily) full, the writer is suspended. Streams of data incorporate the concept of an end of file, which can be detected by a thread reading from the pipe. Here is the outline code for the two threads.

	thread breaker
	thread builder

	while (moreWords) {

 String word = getNextWord();

 writeToPipe(word);

}
	while (moreWords) {

String word = readFromPipe();

dispatchWord(word);

}

To summarize, software can be constructed so that one component creates some information to be passed onto a second. There is a need to communicate information and synchronize actions. This is entitled the producer-consumer situation. Pipes are an excellent mechanism for this.
Sockets

A socket is a connection between a program running on one computer and a program running on another computer. The connection is across a local network or the internet. The connection is full duplex, which means that data can be transmitted in both directions simultaneously. Note that a socket is purely a software concept, not a hardware connection.

Underpinning sockets are the most commonly-used protocols used on the Internet - TCP (Transmission Control Protocol) and IP(Internet Protocol). TCP ensures the reliable transmission of information. IP ensures correct routing. The TCP/IP combination provide a platform for many applications, including the provision of sockets. A client socket is normally used as follows:
1. the new socket is created (in Java using the Socket constructor)
2. the socket attempts to connect to a remote host (in Java this is done when the constructor is called)
3. once the connection has been established, the local machine and the remote machine send and receive data.

4. When the transmission is complete, one or both machines closes the connection.
For example, here is an extract from the Java code that a client program can execute to get the time from a remote machine (from port number 13 on the machine with the domain name www.latimes.com):

Socket socket = new Socket("www.latimes.com", 13);

InputStream stream = socket.getInputStream();

int c;

String theTime;

while ((c = stream.read()) != -1) {

theTime.append((char) c);

}

display("The time in LA is " + theTime);

socket.close();

Another example is a the combination of web browser and a web server, which use sockets to request and to serve web pages. These two programs communicate using a protocol known as HTTP (hypertext transfer protocol). This consists of a request from the browser followed by a reply from the server. All of the communication takes place as text. Normally, the browser sends a series of characters across the internet asking the server to deliver a web page. The message has an agreed layout and the requested URL is part of the message. The web server responds with the content of the web page, which if is it is purely text, consists of HTML. Again, the response conforms to an agreed format. Each component sends some information and then waits for a response. Although each component may carry out some activity while it is waiting for a response, the interaction itself is a synchronized dialog
Components such as the browser and server can be written in different programming languages, run on different machines and under different operating systems. As far as the interaction between components, none of these matter. All that matters is the protocol for interaction and the format of the data that is exchanged.
Self Test Question

Compare pipes with sockets

Answer

Pipes are one-directional; sockets are two-directional.

End
8 Coupling and Cohesion

Coupling and cohesion are a terminology and a classification scheme for describing the interactions between components and within components. Ideally a piece of software should be constructed from components in such a way that there is a minimum of interaction between components (low coupling) and, conversely, a high degree of interaction within a component (high cohesion). We have already discussed the benefits that good modularity brings.
Figure 4 illustrates the ideas of coupling and cohesion. The diagrams show the same piece of software but designed in two different ways. Both structures consist of four components. Both structures involve 20 interactions (method calls or accesses to data items). In the left-hand diagram there are many interactions between components, but comparatively few within components. In contrast, in the right-hand diagram, there are few interactions between components and many interactions within components. The left-hand program has strong coupling and weak cohesion. The right-hand program has weak coupling and strong cohesion.

[image: image5.png]Is—27
| </
N

™

Figure 4 Coupling and cohesion in two software systems

Coupling and cohesion are opposite sides of the same coin, in that strong cohesion will tend to create weak coupling, and vice versa.

The ideas of coupling and cohesion were suggested in the 1970's by Yourdon and Constantine. They date from a time when most programming languages allowed the programmer much more freedom than modern languages permit. Thus the programmer had enormous power, but equally had the freedom to write code that would nowadays be considered dangerous. In spite of their age, the terminology of coupling and cohesion is still very much alive and is widely used to describe interactions between software components.

9 Coupling

Coupling is a term that describes the nature of the interaction between components.

We are familiar with the idea of one component making a method call on another, but what other types of interaction (coupling) are there between components? Which types are good and which bad?

First, an important aspect of the interaction between components is its "size". The fewer the number of elements that connect components, the better. If components share data, it should be minimized. A minimum number of parameters should be passed between components in method calls.

What about the nature of the interaction between components? We can list the types of connection mechanism discussed above an order that goes from strongly coupled (least desirable) to weakly coupled (most desirable).

1. shared or global data.
2. synchronization mechanism
3. method call
4. data flow (pipes)

5. sockets
Synchronization

If there is multi-threading or software is distributed across a network or the internet, different components can be running at the same time. When two components interact, should one wait for the other? Waiting is termed blocking or synchronous interaction. If a program asks for data to be written to a disk, does the program wait for completion of the operation or simply continue immediately without blocking?

Communication mechanisms can be categorized as either synchronous or asynchronous:

· synchronous (blocking) means that the sender must wait if the receiver is not ready, and vice versa. This is like a normal, polite telephone conversation, where people do not speak at the same time, but rather speak in turn.

· asynchronous (non-blocking) means that the sender continues, even if the receiver is not ready. This is like the postal system. Asynchronous communication implies the provision of some buffer space to hold messages.

The mechanisms for coupling described in this chapter have the following synchronization characteristics:

	mechanism
	asynchronous or synchronous

	shared data with mutual exclusion
	blocking

	synchronization primitives
	blocking

	method call
	blocking

	pipes
	no blocking. Except when the pipe is empty, the read operation blocks. Also except when the pipe is full, the write operation blocks.

	sockets
	either, but often employed with blocking

Blocking implies that the interacting components are bound together, at least in time. Non-blocking means that components execute independently, without any timing constraint from another component. The latter, therefore, represents weaker coupling.

Conclusion

Mechanisms for coupling can be placed in order of increasing complexity, as shown in the following table. Simplicity implies less development effort and greater reliability:

	1. pipes

2. sockets

3. method calling

4. shared data
5. synchronization mechanism
	

The conclusion is that the weakest (best) coupling is to be achieved by using components that communicate by data flow (pipes) or using sockets. But both schemes incur performance penalties.

Another categorization is according to performance (speed):

	1. shared data
2. method calling

3. synchronization mechanism

4. pipes

5. sockets
	

Normally you want to use the simplest, most high-level mechanism or the mechanism that best matches the problem scenario. But the simplest mechanism may be too slow. For example, it would be crazy to use sockets for all the interaction between components in software designed to run on a single computer. So, as is often the case during software development, a review may need to be carried out to assess whether speed or simplicity is more important. Often the best technique is to use method calls with a small number of pure data parameters
Self Test Question

What is the difference between the data flow and the conversation types of interaction?

End

Answer

Data flow connection normally implies a long stream of serial data with a distinct ending. The interaction is one-directional. A conversation is usually intermittent and does not necessarily involve an ending. It is bi-directional.
End

10 Cohesion

Cohesion is about unity. How do we group actions and data together in the best way? Cohesion is all about grouping together things that are related. Programming languages usually provide the following mechanisms for doing this:

1. method – grouping instructions that (ideally) collaborate in achieving some single task. Example: a method setText. Guidelines for cohesive methods are discussed below.

2. class – grouping methods, all of which act upon the same data. Example: a class TextBox. Guidelines for creating cohesive classes are discussed in chapter ?? on refactoring.

3. package – grouping classes that relate to the same concept or facility. Example: a package of GUI components that includes classes for text box, button, label, etc.

These concepts range from detailed level of abstraction to a high level of abstraction.

The classes within a package aren’t there simply for convenience. Very often there will be strong coupling between them – through inheritance. For example GUI components all have position, size, colour and so can exploit a common superclass. Thus there is considerable cohesion within the GUI package. But we would expect very little coupling between different packages. The package scope rules encourage inheritance within the package and somewhat discourage it outside.

Examples of methods, classes and packages can be seen in the libraries of all the major languages – Java, the .Net languages (all of which share the same library), C, Eiffel, C++, which each provide many tens of classes and hundreds of methods. These languages share the same groupings of classes into packages:

· data structures

· GUI components

· maths

· database access

· graphics

· networking

If we include the packages that are normally considered to be part of the operating system, we could add:

· input-output and file handing

· the kernel

When you are developing a large system it makes sense to group the new classes into different packages. The best way is probably to use the large-scale, architectural structure of the software. This is probably also the vehicle for dividing the work between developers. For example a classic 3 tier system could be built from 3 packages – the user interface, the business logic and the database access.

11 Method Cohesion

A scheme has been drawn up for classifying the various types of cohesion within a method. These range from low cohesion (undesirable) at the top of the list, to high cohesion (desirable) at the bottom of the list. Some of these types of cohesion are now only of historical interest; current design methods ensure that they simply don't arise. The list of categories is:
	1 coincidental

2 logical

3 temporal

4 communicational

5 functional

	

We will now look in turn at each of the different types of cohesion. In each case our analysis will be based on a statement of what a method will do. We will see that if a method does a mixture of things, then it has poor cohesion. On the other hand, if a method carries out one specific action, then it has good cohesion.

1 Coincidental cohesion

In coincidental cohesion the ingredients are in the method purely by coincidence. There is no relationship between the ingredients; their coexistence is purely arbitrary. This type of modularity would arise if someone had taken an existing method and arbitrarily chopped it up into methods, say each of one page in length. It would then be impossible to write down a meaningful statement of what each method accomplishes.

2 Logical Cohesion

In logical cohesion, the method performs a set of logically similar functions. As an example, we could during the design of a piece of software identify all of the output activities of the system and then combine them into a single method whose function could be described as

output anything

Such a method is clearly multi-functional. It performs any of a range of (output) operations such as:

· display text on screen

· output line to printer

· output record to file

On the face of it such a method is rational, even logical. It seems like an act of housekeeping has been carried out to collect together logically related activities.

Another example of a logically cohesive method is one that is described by the name:

 calculate

and which carries out any of a range of mathematical calculations (log, sine, cosine, etc.).

The problem with a logically cohesive method is that it is multi-functional; it carries out any of a menu of actions, rather than one single well-defined action. It is unnecessarily complex. If we need to modify any one ingredient within the method, we will find it hard to ignore the other elements.

3 Temporal Cohesion

In temporal cohesion, the method performs a set of actions whose only relationship is that they have to be carried out at the same time. The classic example is a set of initialization operations. Thus a method that carried out the following collection of actions:

clear screen

open file

initialize total

would exhibit temporal cohesion.

A sequence of initialization actions like this is such a common feature of most programs and systems that it is hard to see how to avoid it. But as we can see in our example, the ingredients are not related to each other at all. The solution is to make the initialization method call other, specialized components. In the above example the initialization method would be improved if it consisted of the sequence of calls:

initialize screen
initialize files

initialize calculation

Initialization plays a role in Object-Oriented Programming. Whenever a new object is created from a class, a constructor method is executed to carry out any initialization of the object. Does this mean that constructors are bad? No, because a constructor has a limited remit, to initialize the specific object. The constructor is strongly related to the other ingredients within the class.
4 Communicational Cohesion

In communicational cohesion, functions that act on the same data are grouped together within one method. For example, a method that displays and logs a temperature is carrying out two different actions on the temperature data. A similar example is a method that both formats and displays a number.

Thus a communicationally cohesive method is described by several verbs and one noun. The weakness of such a method is, again, that it is unnecessarily complex - too many things are being grouped together. The actions can be distinguished and designed as separate methods.

5 Functional Cohesion

Functional cohesion is the best type of cohesion. A method with functional cohesion performs a single, well-defined action on a single subject. Thus a sentence that accurately describes the purpose of the method has only one verb and a single object that is acted upon by the verb. Here are examples of descriptions of such methods:

· calculate average

· print result

· input transaction

· open valve

· get date
Conclusion

As with the ideas of coupling, if we find that the methods in our software exhibit poor cohesion, the concepts of cohesion do not provide us with a method for improving our structure - they merely tell us how poor our structure is. Another problem with the classification scheme is that it is sometimes difficult to identify which type of cohesion is present.
Self Test Question

A library method draws a line from one set of coordinates to another. What type of cohesion does it exhibit?

Answer

The method performs a single well-defined action. The parameters are pure data. This is functional cohesion.

End

12 Discussion

In this chapter, we have discussed a range of considerations about the design of software components. The ideas can be grouped into two areas:

· those that deal with interactions within components - size, cohesion.

· those that deal with interactions between components - information hiding, coupling.

These guidelines help us in three ways:

1. they help us decide what to do during the act of design, guiding us to software that is clear, simple and flexible.

2. they provide us with criteria for assessing the structure of some completed software.

3. they assist us in refactoring (re-structuring) software in order to improve it.

Throughout this book, we describe a number of methods for software design - creating a structure for the software. Unfortunately, no method can claim to lead the designer to an ideal structure. So guidelines for modularity supplement design methods in providing guidance during the process of design. In addition, they enable us to make judgments on the quality of a piece of software that has been designed. They may enable the designer to improve the software structure.

A limitation of these guidelines is that they are largely qualitative rather than quantitative. In chapter 29 on metrics, we look at one attempt to establish a quantitative measure for the complexity of a component.

We shall see more on the nature of the relationships between components in chapter 12 on patterns.

13
Summary

Modularity is important throughout software development including design, testing and maintenance.

Restricting component size is one crude way of reducing complexity.

The principle of information hiding is that data should be inaccessible other than by means of the methods that are specially provided for accessing the data.
Object-Oriented Programming explicitly supports information hiding, weak coupling and strong cohesion.

Coupling and cohesion are terms that describe the character of the interaction between components and within components, respectively. Coupling and cohesion are complementary. Strong coupling and weak cohesion are bad; weak coupling and strong cohesion are good. Thus coupling and cohesion provide a terminology and a qualitative analysis of modularity.

References and Further Reading

1 This is the paper that suggests the small capacity of the human brain when comprehending a set of items as a complete whole.

The magical number seven, plus or minus two; limits on our capacity for processing information
G A Miller, The Psychological Review, Vol 63, No 2 (March 1956), pp 81-97.

2 This classic paper introduced the idea of information hiding.

On the Criteria to be used in Decomposing Systems into Component
D.L.Parnas, Commun. ACM vol 15 pages 1053-1058 Dec 1972 This paper is reprinted in "Tutorial on Software Design Techniques" P.Freemen and A.I.Wasserman 2nd Edition. Published by IEEE.

3 This is the book that first introduced the ideas of coupling and cohesion. There is also treatment of the issue of the optimal size of a component

Structured Design

Yourdon, Edward, and Larry L. Constantine, Englewood Cliffs, N.J. Prentice-Hall, Inc., 1979

4 This gives a more recent presentation of the ideas of coupling and cohesion.

The practical guide to Structured Systems Design
Page-Jones M, Yourdon Press, New York. 1980

5 Software Architectures. Perspectives on an Emerging Discipline
Mary Shaw and David Garlan. Prentice Hall, New Jersey, 1996.

One of the first books on design patterns (architectures) - general software structures that can be applied to a whole number of software systems. The book also analyses the different mechanisms available for connecting components.
6 Interface-Oriented design
Ken Pugh, Pragmatic Bookshelf, 2006

This shows how to design software by concentrating on the interfaces between components.
Exercises

1 What is modularity and why is it important?

2 Argue for and against restricting components to about 7 statements.

3 Look at the way that the library methods are called within a library available to you - say the Java or C# library. Assess what forms of coupling are demonstrated by the methods.

4 Examine any software or software design that you have available. How are the components coupled? What forms of coupling and cohesion are present? Analyze the component types. Is information hiding in use? Can the structure be improved?

5 Is there any correspondence between:

 (a) any one form of cohesion and information hiding?

 (b) any form of coupling and information hiding?

6 Does functional decomposition tend to lead to components that possess a particular form of cohesion? If so, which?

7 In functional decomposition, the components are functionally independent but they may act upon shared data. Is functional decomposition compatible with information hiding?

 8 Does the data structure design method lead to a program structure that exhibits any particular types of coupling and cohesion? How does information hiding relate to, or contrast with, data structure design?

9 Does data flow design create a program structure that exhibits any particular types of coupling and cohesion?

10 Does Object-Oriented design tend to create software structures that exhibit any particular types of coupling and cohesion?

11 Consider a programming language with which you are familiar. What types of coupling are allowed? What types are not permitted?

12 Compare and contrast the features for modularity provided by C++, Ada, Java and Unix.

strong coupling

(more complex)

weak coupling

(simpler)

slower

faster

strong cohesion

weak cohesion

7
25

_1144844387.unknown

_1144845114.unknown

